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ABSTRACT

To correctly detect dynamic targets and obtain a record of
the trajectories of identical targets in appearance over time,
has become significantly more challenging and infers count-
less applications in biomedicine. In this paper, we propose
a novel structured learning-based graph matching algorithm
to track a variable number of interacting objects in dynamic
environments. Different from previous approaches, the pro-
posed method takes full advantage of neighboring relation-
ships as edge feature in the structured graph. The target prob-
lem is regarded as structured node and edge matching be-
tween graphs generated from successive frames. In essence,
it is formulated as the maximum weighted bipartite matching
problem which is solved by dynamic Hungarian algorithm.
The parameters of the structured graph matching model can
be acquired in a stochastic graduated learning step in differ-
ent dynamic environments. The extensive experiments on dy-
namic cell and football sequences demonstrate that the result-
ing approach deals effectively with complicated target inter-
actions.
Index Terms— Multiple object tracking, structure fea-

ture, learning-based graph matching, dynamic environments.

1. INTRODUCTION

This work is concerned with the problem of tracking inter-
acting objects in complicated dynamic environments. The
difficulty of the dynamic tracking problem grows consider-
ably with the increasing density of image objects, and the
problem becomes a challenging issue due to frequent dy-
namic interactions between the objects. Extensive research
on generic video object tracking can be categorized into two
major classes: object representation and localization, e.g.
mean-shift tracking [1], and filtering and data association,
e.g. particle filtering [2]. The former is considered as local
search with low computation and little information of motion
and structure factors. The latter solves the target problem by
sequentially estimating the state of object using a sequence of
noisy measurements about the object states, and its existing
variants fail to deal with the interaction of the object mo-
tions in structured environments. Therefore, there has been
active research on learning based methods for analyzing and
understanding behavior prediction in videos [3]. Along the
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depth of observations, this paper is motivated to handle com-
plicated interactions of the targets in dynamic environments,
which could involve the entry, exit, splitting, and touching
occurrences.
To detect dynamic multiple targets correctly and obtain

a record of the trajectories of identical targets in appearance
over time, sequential inference has recently been developed
[4]. Instead of assuming the one-to-one mapping between
observations and targets in traditional multiple hypothesis
trackers, MCMC-based sequential tracking methods allow
multiple temporal associations between observations and
targets, and simulate the distribution of the association prob-
ability with a number of targets [5]. However, an excessively
large number of samples would be required to approximate
the underlying density functions with desired accuracy. As
abstract representations for complex scenes, attributed graph
matching problems could be formulated to find the close-
to-optimum solution [6] where two graphs are considered
isomorphic only if the correspondence between their ver-
tices pairs up vertices with equal labels. To avoid the time-
consuming manual labeling of correspondences, learning the
parameters for graph matching has recently been concerned
in practice [7]. With the insight of learning-based graph
matching [8], this paper integrates the structural quadratic
compatibilities on mutual association and local compatibili-
ties on point pattern matching into the objective function to
find the optimal assignment in a dynamic behavioral model.
In a first contribution of this paper, structure feature is

presented to track a variable number of interacting objects
in complicated dynamic environments. The proposed struc-
ture feature involves neighboring relationships including the
lengths and angles of the edges in the structured graph, and
represents nonlocal structure information of the whole graph.
As a second contribution, the structured learning-based graph
matching model is established, replacing the generic graph
matching cost with a novel structured graph matching cost
by incorporating the structured factor. The proposed struc-
tured graph matching problem is regarded as maximizing the
matching cost of subgraphs that consist of structured nodes
and edges. The parameters of the model can be acquired in
a stochastic graduated learning step. Therefore, the multiple
object tracking problem is actually considered as the max-
imum weighted bipartite matching problem, which can be
solved by dynamic Hungarian algorithm. The tracking results
of the scenes with complicated target interactions are demon-
strated by extensive experiments on dynamic cell and football
sequences, and the proposed approach achieves a good per-
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Fig. 1. The subgraph of the node and its neighborhood.

formance on dynamic object interactions.
The rest of the paper is organized as follows. The pro-

posed structure feature is described in section 2. Section 3
demonstrates the structured learning-based graph matching
method. The experimental results in Section 4 is validated to
reflect the effectiveness of the proposed method for tracking
a variable number of interacting objects.

2. STRUCTURE FEATURE

In generic graph matching methods, basic features for each
separate target are recorded by a node, which would be uti-
lized in node matching and parameter acquisition. However,
it can not obtain a good performance by using the node fea-
tures only, due to making little use of the whole structure in
the graph and ignoring the environment related factors, es-
pecially in complicated dynamic environments. In this pa-
per, the structure of the subgraph is the neighboring relation-
ship between the objects, which is illustrated in Fig. 1. In
essence, the probability of correct matching would be much
larger when all the object and its neighborhood can match the
co-located subgraphs in the next graph. Hence, we make in-
ference with the structure feature in the graphical model.
In the sequence of images, graphs generated from two

consecutive images are denoted by G and G ′, respectively.
Each graph is a complete set of all nodes and edges (i.e.,
G = (V,E)) derived from the target image. Each detected
object is defined as a node in the graph. Node set generated
from imageG with elements k is expressed by:

V = {v1, v2, v3, · · · , vk}
To define structure feature, we need the concept of neigh-

borhood. The neighborhood set of a target node consists of
all neighbors adjacent to it, denoted by:

N(vi) = {v1i , v2i , v3i , · · · , vmi }
wherem is size of the neighborhood set.
The size of the neighborhood set, or number of its neigh-

bors, is also called as degree of a node, which can be decided
in several different ways. In this paper, we choose to con-
struct regulated graphs in which all nodes are endowed with
the same degree value.
The structure feature is derived from edge feature which is

the relationship between the nodes, including the lengths and
angles of the edges between the object and its neighborhood.
The edge feature is not only related with the node feature of

the object’s neighborhood, but the separation angle between
two matching edges also makes a great effect. The angular
factor considers degree values between two edges e(vα

i vi)

and e(vβi′vi′). In this way, the edge feature is calculated by:

fe(v
α
i , vi, v

β
i′ , vi′ )

= Fc(v
α
i , v

β
i′) ∗ exp

(
− |Dist(vα

i vi)−Dist(vβ

i′vi′ )|
dist

)

∗exp
(
− |Arg(vα

i vi)−Arg(vβ

i′vi′ )|
θ

)

where vαi ∈ N(vi), vβi′ ∈ N(vi′), the function fe(•) is the
similarity of edge pair, Fc(•) is the similarity of node pair,
andDist(•) and Arg(•) are the length and angle of the edge
respectively.
The subgraph consists of the object and its neighborhood

as a part of the whole graph. The proposed structure feature
involves neighboring relationships in dynamic environments,
and represents nonlocal structure information of subgraphs.
Therefore, the dynamic targets can be tracked easily by us-
ing the structure feature. In the proposed method, we pro-
pose a algorithm not simply in term of a node matching, but
a subgraph matching method instead. The structure feature is
also fully utilized in computing the matching cost to improve
the tracking performance. Finally, the total structure feature
Fe(•) of the subgraph can be defined:

Fe(vi, vi′) =
∑

v
αk
i ∈N(vi),v

βk
i′ ∈N(vi′ )

fe(v
αk
i , vi, v

βk

i′ , vi′)

where vαk

i ∈ N(vi) and vβk

i′ ∈ N(vi′), k = 1, 2, · · · ,m.

3. STRUCTURED LEARNING-BASED GRAPH
MATCHING

3.1. Structured Graph Matching Problem

In the structured graph matching problem, we denote the no-
tations used in the model, and define the structured graph
matching problem. We denote a pair of graphs in a typical
way, the first one G and the second G′, and Gi as the ith at-
tribute of the node and Gij as the edge ij in graph G. In the
standard graphs, the edge attributes Gij ∈ {0, 1} are binary.
For the matching matrix y, yii′ ∈ {0, 1}, yii′ = 1 if node

i in the first graph matches node i′ in the second one, and
yii′ = 0 otherwise. cii′ is defined as the coefficient of the
compatibility function for linear assignment (i → i ′), and
dii′jj′ is defined as the coefficient of the compatibility func-
tion for quadratic assignment (ij → i ′j′). The graph match-
ing problem is formulated in a generic way. Therefore, the
estimated matching matrix ŷ is acquired by the solution of
the following optimization problem.

ŷ = argmaxy
[∑

ii′ cii′yii′ +
∑

ii′jj′ dii′jj′yii′yjj′
]

s.t.
∑

i yii′ ≤ 1, for all i′∑
i′ yii′ ≤ 1, for all i

(1)
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In this problem, there are some special constraints of the
edges. The edges only exist between the objects and their
neighborhood, which can be formulated as follows.

{
dii′jj′ �= 0, vj ∈ N(vi) and vj′ ∈ N(vi′)
dii′jj′ = 0, otherwise

In this case, the matching cost in Eq. (1) is formulated as

∑
ii′ cii′yii′ +

∑
ii′jj′ dii′jj′yii′yjj′

=
∑

ii′ yii′ (cii′ +
∑

vj∈N(vi),vj′∈N(vi′ )
dii′jj′yjj′ )

=
∑

ii′ yii′ (cii′ + d′ii′ )
(2)

3.2. Structured Learning-based Graph Matching

In the proposed approach, the parameters of the structured
graph matching model are acquired in a structured learning
phase. The training dataset is N observations x from an in-
put set X and N corresponding labels from an output set
Y , which make up the structured training pairs of dataset
{(x1, y1), (x2, y2), . . . , (xN , yN )}, and xn is an observation
of graphsGn and G′n, and yn is the n-th iterative match ma-
trix between Gn and G′n. Therefore, the learning problem
becomes finding a parameterized function of the graphmatch-
ing model gω, which minimizes the matching cost on the test
dataset.

1

N

N∑
n=1

Δ(gω(G
n, G′n), yn) + λΩ(ω) (3)

whereΔ(gω(G
n, G′n), yn) is the loss incurred by the predic-

tor g when predicting. The output gω(G
n, G′n) is the pre-

diction of the matching matrix yn, which is used instead of
the training input yn in the method. The term Ω(ω) (i.e., a
regularization function of ω) and λ is a parameter in the loss,
which are used against overfitting in the training dataset.
Next, we have to define the function gw(G,G′), whose

parameter ω we optimize over the loss function Δ and the
regularization term Ω(ω). In order to specify the function
gω(G,G′), we use the standard approach of discriminant
functions. The discriminant function f(G,G ′, y;ω) is max-
imal for the case of gw(G,G′), which is the optimal esti-
mate for y (i.e., gω(G,G′) = argmaxf (G,G′, y;ω)). In a
generic way, we define f(G,G′, y;ω) as a linear function,
f(G,G′, y;ω) = 〈ω,Φ(G,G′, y)〉. Correspondingly, the
predictor gw(G,G′) is formulated in Eq. (4).

gω(G,G′) = argmax
y∈Y

〈ω,Φ(G,G′, y)〉 (4)

The joint feature of graph pairs have to be defined in order
to specify the function gω(G,G′), and the feature should con-
tain the properties of both graphs as well as the properties of
a match matrix y between these graphs. For this purpose, we
can find the relationships between the learning phase given
by Eq. (4) and the graph matching model previously given by
Eq. (2), and the solution of the optimization problem of graph
matching is the estimate of function g, i.e., yω = gω(G,G′).
The discriminant function in Eq. (4) is introduced into Eq.
(2):

Fig. 2. Example tracking results obtained for cell sequence.

〈Φ(G,G′, y), ω〉 =
∑
ii′

yii′ (cii′ + d′ii′ ) (5)

The graphs and the parameters must be encoded in the
compatibility functions. Like f(G,G′, y;ω), we choose
the coefficients of the compatibility functions also in linear
method as:

cii′ = 〈Fc(vi, v
′
i′), ω1〉

d′ii′ = 〈Fe(vi, v
′
i′), ω2〉 (6)

where Fc(vi, v
′
i′) represents the node matching cost of node

pairs (vi, v′i′), and Fe(vi, v
′
i′ ) is the edge matching cost in the

subgraph pairs of the nodes vi and v′i′ . In the learning phase,
the appropriate feature can be selected arbitrarily. v i and vi′
are a potential candidate pair {vi, vi′} that vi ∈ G, vi′ ∈ G′.
In the particular case of Eq. (5), by defining ω := [ω1 ω2],

cii′ and dii′jj′ are only related with the features of node and
edge of graphs. We obtain the final form of Φ(G,G ′, y) from
Eq. (5) and Eq. (6):

Φ(G,G′, y) = [
∑
ii′

yii′Fc(vi, v
′
i′),

∑
ii′

yii′Fe(vi, v
′
i′)] (7)

At last, we define the loss function

Δ(y, yn) = 1− 1

‖yn‖2
∑
ii′

yii′y
n
ii′

and Ω(ω) is specified as 1
2‖ω‖2.

In the proposed method, the convex function 1
N

∑
n ξn

is an upper bound for 1
N

∑
n Δ(gω(G

n, G′n), yn) with ap-
propriately chosen constraints. The optimization problem of
structured learning-based graph matching becomes

minω,ξ
1
N

∑N
n=1 ξn + λ

2 ‖ω‖2
s.t. 〈ω,Ψn(y)〉 ≥ Δ(y, yn)− ξn

for all n and y ∈ Y.
(8)

whereΨn(y) = Φ(Gn, G′n, yn)− Φ(Gn, G′n, y).
Referring to [8], we can acquire ω in a graduated learn-

ing step, and find the results of the structured graph matching
problem in Eq. (1) using dynamic Hungarian algorithm.

4. EXPERIMENTAL RESULTS

To validate the efficiency of the method, the proposed struc-
tured learning-basedgraphmatchingmethod has been applied
to typical scenes.
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(a) Touching Cells

(b) Merging Cells

(c) Boundary Cells

Fig. 3. Tracking results in dynamic cell environments.
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Fig. 4. Statistical performance in different methods

In the first experiment, we consider the difficult cell
tracking problem in biomedicine. The cell sequence con-
sists of 100 frames sampled from time-lapse fluorescence
microscopy. These image sources are captured in a spatial
resolution of 672×512, and a temporal resolution of 3 min-
utes between every two consecutive frames. Furthermore, the
sources are full of different kinds of complicated cell inter-
actions. According to the low intensity of the cell sequence,
we utilize the LBF level set method for cell segmentation.
The node features adopt the spatial, gray level, shape, and the
proposed structure feature. The tracking results are shown
in Fig. 2, and Fig. 3 illustrates the proposed method has
a good performance for touching, merging and boundary
scenes. Also, we use the Maximum Cross-Correlation and
particle filter methods for comparison. Fig. 4 provides the
average errors on each frame, which show the proposed struc-
tured learning-based graph matching method always gains a
better performance on dealing with the complicated target
interactions.
Another experiment on the football sequence is 2010

UEFA Champion League final, where we use SIFT and the

Fig. 5. Example tracking results obtained for football se-
quence.

proposed structure feature. The tracking results are shown in
Fig. 5, where players are labeled in red rectangle, and the blue
lines record the trajectories of players. It is illustrated that
the proposed method performs well on the dynamic football
sequence.

5. CONCLUSIONS

To address the dynamic scenes in multiple object tracking
problem, a novel structured learning-based graph matching
method is proposed in this paper. In the proposed method,
we utilize both the node and structure feature in the graphs,
instead of considering the node feature only. The structured
learning-based graph matching model is established using a
novel structured matching cost by incorporating the proposed
structure feature, and the parameters of the model are ac-
quired in a stochastic graduated structured learning step. At
last, the extensive experiments on cell and football sequences
validate that the proposed method can gain a good perfor-
mance in different scenes, especially in complicated dynamic
environments.
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